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The upper and lower bounds of fiberffiber interaction effects induced by the different fiber morphologies 
in a short fiber reinforced composite were studied using an axisymmetric finite element (FE) model 
that employs a periodic hexagonal array of elastic short fibers embedded in an elastoplastic matrix. An 
equivalent representative volume element (RVE) was modeled to maintain vertical and horizontal 
constrained boundary conditions for the reduction of modeling efforts. The internal stress fields were 
evaluated for the ideally aligned single fiber model and compared to a staggered model. It was found 
that both fiber and matrix stresses in a staggered fiber model are significantly altered from those of the 
perfectly aligned case. Finally, the hydrostatic stresses in the matrix along the fibedmatrix interface 
and the evolution of matrix plasticity for each model were illustrated. 

KEY WORDS Morphological effect, aligned and staggered fiber model, hydrostatic stress, 
plasticity . 

1. INTRODUCTION 

For the analysis and design of composites, finite element analysis (FEA) has become 
a popular tool because of its versatile micromechanical modeling capability. One 
of the earliest FEA work in this area is due to Iremonger and Wood.' They studied 
stresses in the region of a broken fiber using a 2-D plane stress FEA and found 
that the stress concentrations become more significant as fibers approach to them- 
selves. They also found that higher stress concentrations exist at the fibedmatrix 
interface if the matrix end gap is a void compared to a filled matrix. Using an 
axisymmetrix FE model, Carrara and McGarry2 pursued to describe the distribution 
of stresses near the tip of the fiber for the different end geometries and modulus 
ratios. The photoelastic investigation combined with 2-D FEA was also performed 
to understand the discontinuity effects between  fiber^.^ As a more systematic study, 
Barker and MacLaughlin4 identified three primary parameters, such as, end gap 
size, fiber volume fraction and modulus ratio to study on discontinuity effects. 
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62 H. G .  KIM AND D. J. LEE 

All the above analyses were limited to a linear elasticity and so did not permit 
localized yielding behavior in the matrix. For performing elastoplastic FEA, Chen5 
applied von Mises-Hencky criterion to each constituent material of a polymer matrix 
composite (PMC) using 2-D model. The aligned and staggered fiber geometries to 
define the boundary conditions of a representative volume element (RVE) was 
first considered by Agarwal et d6  in a PMC. They studied on the influence of a 
different fiber geometries to investigate the internal stresses and global composite 
properties in graphite-epoxy system. However, the boundary conditions they im- 
plemented in the staggered fiber model were not verified well in the realistic sense. 

On the other hand, Termonia' studied to find the stress transfer mechanism for 
a single fiber model using 2-D finite difference method. He showed that the finite 
difference approach can provide a useful tool. Subsequently, he investigated the 
elastic properties of short fiber and particulate filled polymers using his computer 
rnodeL8 Recently, Christman et aL9 studied using a 2-D elastic-viscoplastic model 
and presented that the effect of fiber clustering is substantial for composite strength- 
ening by emphasizing the dependence of ductility on the microstructure of the 
matrix and on the morphology of the reinforcement. More recently, Papazian and 
Adler'O characterized the tensile behavior of the S i c  reinforced A1 alloy in terms 
of different heat treatment conditions, and subsequently Levy and Papazianll sim- 
ulated with their experimental results by modeling on transversely aligned and 
staggered fiber arrangements using 3-D FEA. They concluded that the experimental 
data is between the aligned and staggered model. 

Ideally, evaluating fiber interactions require 3-D multiple fiber models but 3-D 
models need enormous computation and are expensive. Thus, 2-D models are still 
popular to investigate qualitative results. However, the quantitative results in 2-D 
models are inaccurate. Thus, an axisymmetric model which quantitatively provides 
the similar results for a staggered RVE (SRVE) as a full 3-D model has been 
developed in this study. This new axisymmetric RVE also provides valuable in- 
formation on the physical aspects of the local stress variations in the matrix and 
fiber. Further, these results compare to the idealized aligned RVE (ARVE) for 
the evaluation of fiber arrangement effects. It was found, using the new axisym- 
metric RVE, that a fundamental difference exists between the ARVE and SRVE. 

2. ANALYSIS 

The FE formulations in this work are centered on the elastoplastic analysis with 
small strain plasticity theory1*.l3 using an axisymmetric single reinforcement model. 
To solve nonlinearity, Newton-Raphson method has been implemented in this 
study. Consistent with small strain theory, we can write as: 

{dE"} = {d&} - { d d ' }  

where {de},  {dee'}, and {dep'} are changes in total, elastic, and plastic strain vectors, 
respectively. Elastoplastic stress-strain matrix can be solved iteratively, in which 
the elastic strain vector is updated at each iteration, and the element tangent matrix 
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SHORT FIBER COMPOSITES 63 

is also updated. For a static analysis, the FE discretization process yields a set of 
simultaneous equations: 

where [ K ]  is the stiffness matrix, {u} is a set of displacements, and {F"} is a set of 
applied loads. By Newton-Raphson method, the path dependent non-linearity can 
be accomplished effectively by using a step by step incremental analysis, i.e., the 
final load {Fa} is reached by stepping the load in increments and performing the 
Newton-Raphson iterations at each step: 

where [Km,J is the tangent stiffness matrix for load step m, and iteration n,  
{F&} is the restoring force for load step rn and iteration n ,  and { F ; }  is the total 
applied force at load step m. At each iteration of a load step, both [K,]  and {Fy} 
are evaluated based on the configuration given by {u,}  and the preset criterion for 
convergence, i.e. plasticity ratio was used as 1% at all integration points in the 
model. The element tangent matrix [Ke,,] and the element Newton-Raphson re- 
storing vector { F:;,} in the nth iteration are: 

where [B]  is the strain-displacement matrix, [Dep,J is the elastoplastic stress-strain 
matrix. The derivation of [D,] is as follows. The yield criterion determines the 
stress level at which yielding is initiated. For an elastoplastic material, a yield 
function F which is a function of stress {u} and quantities {a} and K associated with 
the hardening rule can be defined. Yielding occurs when 

where K is the plastic work per unit volume and {a} is the translation of yield 
surface. Specifically, the {a} is history dependent, i.e. 
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FIGURE 1 2-D multi-fiber models: (a) Aligned model, (b) Staggered model. 

where C is a material parameter. According to von Mises theory, yielding begins 
under any states of stress when the effective stress ue exceeds a certain limit, where 

U, = ?{(ax - + (a,, - + (U, - + 3(T:y + T& + T:=) (10) " 
The flow rule determines the direction of plastic straining. A plastic potential Q 
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m- L11 m m m a m m m m m m ~  
FIGURE 2 FE mesh with the symmetric and loading boundary conditions generated for ARVE 

(a) (b) 

FIGURE 3 
agonal packing symmetry of fibers, (b) The corresponding equivalent axisymmetric RVE. 

A schematic of the procedures from multi-fiber model to axisymmetric model: (a) Hex- 

which has a unit of stress and is a function of stresses (that determine the direction 
of plastic straining), Q = Q ({a}, {a}, K). With A, a scalar which is called a plustic 
multiplier (that determines the amount of plastic straining), the plastic strain in- 
crements are given by 

{dep'} = A {z] 
where (dep'} is the incremental plastic strain. The hardening rule describes the 
change of the yield surface with progressive hardening, so that the conditions, i.e., 
the yield surface in stress space. Equation (7) can then be differentiated so that 

dF = {E} ' {dcr]  + { g I T ( d a )  + - d ~  dF = 0 
dK 

Noting from equations (8) and (9) that 

{da} = C{deP'} 
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r 

t 
13 Fiber 
0 Matrix 

FIGURE 4 FE mesh for the new axisymmetric model with staggered fiber arrangement (SRVE). 

dK = {U} T{dE"'} (14) 

Using equations (13) and (14), equation (12) becomes 

{ S J T { d u }  + {g}r C{deP ' }  + -{u}T{ds"'}  dF = 0 
dK 

The stress increment can be computed via the elastic stress-strain relations as 
follows: 

Substituting equation (12) into equations (15) and (16) and combining equations 
(15) and (16): 

A = {C,}"(ds} (17) 

where 
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SHORT FIBER COMPOSITES 67 

FIGURE 5 3-D FE mesh of the staggered fiber model for rigorous 3-D calculation 

The size of plastic strain increment is therefore related to the total increment in 
strain, the current stress state and the specific forms of the yield and potential 
surfaces. The plastic strain increment is then computed using equation (11). The 
tangent or elastoplastic stress-strain matrix can then be derived by equation (16): 

{du} = [D]({dE} - { d E P ’ } )  (19) 

Using the definition of { d ~ p ?  and A in equations (11) and (17): 

where the elastoplastic matrix [D,] is 

Incorporating associated flow rule (Plandtl-Reuss equation) and isotropic hardening 
rule, Q = F and {a} = {0} have been implemented in this study. 
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with and without constraints. 

Fiber stresses on  the center line as a function of normalized distance by whisker radius 
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Block diagram of composite.strengthening mechanism. 
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(b) 
FIGURE 8 Deformed shape of 2-D multi-fiber models: (a) Aligned model, (b) Staggered model. 

3. MODEL 

The 2-D multiple fiber model used to develop the physical concepts is shown in 
Figures l(a) and (b), respectively for the aligned and staggered fiber geometries. 
In the very ideal case, where fibers are perfectly aligned, see Figure l(a), a single 
fiber axisymmetric model (related to ARVE) would nearly correspond to a 3-D 
model and fiber interactions can be accounted for by use of cell boundary constraint 
conditions. It has been reported that this type of morphology (ARVE) gives a 
upper bound of constraint effect .9 The FE mesh with symmetric and loading bound- 
ary conditions generated for ARVE is shown in Figure 2. However, it is also 
important to evaluate the morphology having a lower bound of constraint effect 
as shown in Figure l(b), called staggered fiber arrangement (related to SRVE). 
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FIGURE 9 Normalized transverse displacement in a 2-D multi-fiber model as a function of distance 
from fiber center on the RVE boundary. 

0.0002- - Axisymm (Aligned) 
.--- Axisymm (Staggered) 2 0.0000- 

E 
a -0.0008- 

c -0.0010- 
2 
t- -0.0012 I I I I I I I I I 

> In 

0 1 2 3 4 5  

Distance from Fiber Center 
FIGURE 10 Comparison of the transverse displacements along a longitudinal line midway between 
the fibers at low applied load (E, = 0.1% for the new axisymmetric model (SRVE) and the full 3-D 
model). 

In this case, a single fiber axisymmetric model is not appropriate, but a 3-D model 
would be necessary. The physical basis of the interaction modeling for SRVE is 
shown in Figures 3(a) and (b). Results of the interaction from neighboring cells 
are equivalent to a concentric hollow cylinder surrounding the reference fiber. 
Accordingly, the SRVE is shown in Figure 4. The volume of the concentric cylinder 
is identical to that of the six neighboring fibers assuming hexagonal packing. The 
3-D model to compare the results of the SRVE is shown in Figure 5.  

For all models, a uniform reinforcement distribution with an end gap value equal 
to transverse spacing between reinforcements was selected. The reinforcements 
were assumed as no reinforcement/matrix debonding allowed for. The FE com- 
putations were performed using four and eight noded isoparametric elements for 
axisymmetric and 3-D models, respectively. In the axisymmetric models, the spatial 
variable for the axial (mechanical loading) direction is z with the coordinate origin 
at the reinforcement center, whereas the spatial variable for the radial direction is 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
1
4
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



SHORT FIBER COMPOSITES 

Axisymm (Aligned) 1 

71 

Axisymm (Aligned) 

3-D (Staggered) 
a Axisymm (Staggered) 

m 

L 

- 200 m 
Fiber 

End 

.- 
2 100 

0 1  2 3 4 5  
Distance From Fiber Center 

0 1  1 I I I 
0 1 2 3 4 5  

Distance From Fiber Center 

(b) 

FIGURE 11 Fiber axial stresses for different models: (a) At low applied load ( E ~  = 0.1%), (b) At 
high applied load (E, = 0.6%). The stresses along this interface line in the matrix region between fibers 
are also included. 

r .  The constrained boundary condition enforces elastic and plastic constraint by 
requiring that the radial and axial boundaries of RVE were maintained in the 
straight manner during deformation. 

For fiber input data, linear elastic behavior was employed. From the matrix test 
data, however, a multi-linear representation of the matrix stress-strain curve was 
used for elastoplastic matrix behavior. Thus, the stress-strain characteristics of the 
matrix are defined by the elastic (Young’s) modulus, yield stress and multi-linear 
work hardening rates (tangent moduli). The elastic modulus ratio and Poisson’s 
ratio of fiber to matrix were used as 7.14 and 0.52, respectively. The fiber and 
matrix materials were assumed to be isotropic and the elastic constants were as- 
sumed to be temperature independent, i.e., thermally induced residual stresses 
were neglected. To obtain tensile stress-strain behavior numerically, the applied 
far field tensile strain E, was loaded from 0 to 1 %  and 25 small load steps of which 
step has maximum 20 iterations were used incrementally by A&= = 0.04%. The 
obtained stress-strain behavior as a function of the elastic modulus ratio, Poisson’s 
ratio and aspect ratio will be discussed later. l4  
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- Axisymm (Aligned) 
.-_- Axisyrnm (Staggered) 

Axisyrnrn (Aligned) 
Axisyrnm (Staggered) 

600 3-D (Staggered) 
v 

0 1  End 
I I I I 

0 1  2 3 4 5  

Distance From Fiber Center 

(b) 

FIGURE 12 Matrix axial stresses adjacent to the fiberimatrix interface for different models: (a) At 
low applied load (E. = 0.1%), (b) At high applied load ( E ,  = 0.6%). The stresses along this interface 
line in the matrix region between fibers are also included. 

4. RESULTS AND DISCUSSION 

4.1 Effect of Boundary Conditions 

As reported in the previous study,l5 the constraint boundary condition significantly 
effects on the behavior of deformation and failure mechanisms in discontinuous 
composites. In this section, constraint effects are assessed using ARVE because it 
shows the upper bound.9 Figure 6 shows the fiber stresses of constrained and 
unconstrained models of ARVE. It is found that the difference of stress values 
increases significantly as the applied far field strain is increases. The implication 
of this result indicates that the major composite strengthening mechanism stems 
from fiber strengthening generated by sectional equilibrium in the axial direction 
based on tensile triaxiality in the matrix. 

It is inferred, by the results of Figure 6, that the composite strengthening mech- 
anism is substantially influenced by fibedfiber interactions. Figure 7 shows a brief 
strengthening mechanism in a composite. As discussed in the previous work,ls the 
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(b) 

FIGURE 13 Matrix hydrostatic stresses adjacent to the fibedmatrix interface for different models: 
(a) At low applied load (E, = 0.1%), (b) At  high applied load (E, = 0.6%). The stresses along this 
interface line in the matrix region between fibers are also included. 

pronounced constraint effects on the hydrostatic stresses stem from the additionally 
generated tensile triaxiality. This enhancement of hydrostatic stresses results in the 
expansion of yield surface, which prohibits an extensive plastic deformation. The 
implication of this mechanism indicates that the major strengthening stems from 
reinforcement generated by sectional equilibrium in the axial direction based on 
tensile triaxiality in the matrix. 

4.2 Shape of Deformation 

The deformed multiple cells for the two cases are shown in Figures 8(a) and (b). 
It is clear from the figures that for the aligned case any line AA running between 
the fibers is perfectly straight indicating constraint whereas for the staggered case 
the same line AA has approximately sinusoidal type of variation which is similar 
to the kind of displacement profile that is obtained when a single fiber RVE is 
allowed to deform without constraint. This suggests that the magnitude of matrix 
constraint be very different for aligned and staggered cases. The quantitative mag- 
nitude of the displacement along AA is shown in Figure 9. 
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LI] Elastic Region 
Plastic Region 
Fiber 

FIGURE 14 The evolution of matrix plasticity for SRVE at t-, = 0.6%. Dark region indicates the 
plastically deformed zone. 

0 Elastic Region 

FIGURE 15 The evolution of matrix plasticity for 3-D model at F, = 0.6%. Dark region indicates 
the plastically deformed zone. 

The proper 3-D model results including SRVE results were also considered. The 
corresponding displacement profile in the 3-D model which is similar to that shown 
in Figure 9 for the 2-D case is shown in Figure 10. Figure 10 indicates that the 
results of SRVE give rise to a similar qualitative variation as shown in Figure 9. 
Further, the magnitude of the displacement obtained by the SRVE compares very 
well with that obtained by a full 3-D computation. This result establishes the 
significant differencz in constraint effects even for the 3-D case between aligned 
and staggered models. 

4.3 Fiber and Matrix Axial Stresses 

In this section, the elastic and elastoplastic results were presented to examine the 
difference in the behavior between aligned and staggered cases. Here, far field 
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0 Elastic Region 
Plastic Region 
Fiber 

FIGURE 16 The evolution of matrix plasticity for ARVE at E, = 0.6%. Dark region indicates the 
plastically deformed zone. 

elastic strain E, was chosen as E, = 0.1% for the results of elastic analysis and E, 

= 0.6% for the results of elastoplastic analysis. The fiber and fiber end gap stresses 
for the aligned and staggered models (full 3-D and SRVEs) are shown for these 
two loading cases in Figures l l (a )  and (b). It is evident that, in the elastic region, 
there is a little difference between aligned and staggered fiber geometries. However, 
in the elastoplastic region, the fiber and fiber end gap stresses are significantly 
lower in the SRVE case compared to the ARVE case. Concerning to the accuracy 
of the proposed model, there is a good agreement between the 3-D and SRVE. 

Matrix axial stresses, for the two loading cases, adjacent to the fibedmatrix 
interface line are shown in Figures 12(a) and (b). In the elastic region, there is a 
little difference in the matrix axial stress between ARVE and SRVE. On the other 
hand, in the elastoplastic region, the axial matrix stress adjacent of the interface 
for the ARVE case is about half that for the SRVE case. However, the stresses 
in the fiber end gap regions are reversed, that is, the matrix axial stress is higher 
for the ARVE. Again, there is a good agreement between the 3-D and SRVE. 

4.4 Matrix Hydrostatic Stresses and Plasticity Evolution 

The most dramatic effect of constraint can be seen by viewing the matrix hydrostatic 
stresses adjacent to the fibedmatrix interface line, see Figures 13(a) and (b). It is 
shown that the hydrostatic stresses in the matrix adjacent to the fibedmatrix in- 
terface is much higher for the SRVE whereas, in the end gap region, those are 
much higher for the ARVE. It will appear, therefore, that failure mechanisms can 
be significantly altered by the fiber morphology. In the SRVE, the hydrostatic 
stresses are about the same both in the enveloping matrix regions as well as in the 
end gap regions, whereas the high hydrostatic stresses in the ARVE are only 
obtained in the matrix end gap region. Thus far, matrix failure may be more 
distributed for the SRVE case whereas much more localized to the matrix end gap 
region for the ARVE case. Finally, as the difference in plastic zone development 
for the ARVE and SRVE at E ,  = 0.6%, the evolution of plasticity for SRVE and 
3-D model shows a similar behavior as shown in Figures 14 and 15. However, the 
plastic zone for ARVE indicates the larger size as can be seen in Figure 16. 
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5. CONCLUSIONS 

A new axisymmetric model (SRVE) was developed to account for fibedfiber in- 
teraction effects, which compare well with a rigorous 3-D RVE. The model was 
applied to investigate the functional difference between aligned and staggered fiber 
geometries. It was found that the aligned fiber geometry gives more effective load 
transfer to fibers with resulting higher fiber stresses. The magnitude and spatial 
variation of the hydrostatic stresses were significantly different between aligned 
and staggered geometries suggesting that the fracture micromechanisms can be 
different for the two cases. It was also quantitatively evaluated, for ARVE and 
SRVE, that the constraint effects result in a triaxiality in the matrix so that give a 
difficulty to deform plastically between fibers. Further, the fiber axial stress is fairly 
sensitive to the constraint effects and thus contributes to the composite strength- 
ening. 
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